Уплотнение бетонных смесей

При изготовлении сборных железобетонных конструкций очень важно выбрать способ уплотнения смесей, обеспечивающий выпуск изделий требуемого качества при минимальных затратах труда и времени. В практике современного заводского и полигонного производства сборных железобетонных конструкций применяют следующие основные способы уплотнения бетонорастворных смесей: вибрирование, центрифугирование, прокат, прессование, трамбование; в отдельных случаях — комбинированные случаи (центрифугирование, прокат и т.п.).

Благодаря эффективности уплотнения и простоте оборудования наибольшее распространение в промышленности сборного железобетона получил способ уплотнения вибрированием. Уплотнение вибрированием бетонных смесей основано на их свойстве изменять свою структурную вязкость при определенных напряжениях сдвига, которые надо сообщить частицам, чтобы они начали перемещаться относительно друг друга. При вибрировании частые гармоничные колебания, создаваемые вибрационными механизмами, передаются смеси в виде импульсов, под воздействием которых частицы ее начинают совершать непрерывные колебательные движения около своего среднего положения. В результате происходящего при этом резкого уменьшения сил трения и сцепления между частицами жесткая бетонная смесь приобретает свойства «тяжелой» жидкости и становится подвижной (текучей). Частицы бетонной смеси, находясь под воздействием лишь собственной массы, скользят друг по другу, укладываются более компактно и вытесняют наружу часть имеющегося в смеси воздуха, что обеспечивает получение бетона требуемой плотности.

Полученная в процессе вибрирования текучая смесь, подчиняясь законам гидростатики, оказывает давление на стенки формы, что способствует лучшему заполнению опалубки даже при сложных ее очертаниях. После прекращения вибрирования бетонная смесь теряет временно приобретенную подвижность и, будучи уплотненной, имеет бОльшую структурную прочность, чем до вибрирования. Свойство бетонных смесей при достижении определенных напряжений сдвига, сообщаемых ее частицам, переходить из упруго-пластического или вязкого состояния в состояние временной текучести и возвращаться в первоначальное состояние после прекращения внешних воздействий называют тиксотропией.

Вибрирование применяют для уплотнения только жестких и малоподвижных смесей. Для подвижных смесей кратковременное вибрирование используют не для уплотнения, а для механизации ее укладки в формы, так как продолжительное вибрирование вызывает расслоение смеси. Величина напряжения сдвига, при которой смеси в процессе вибрирования приобретают текучесть, связана с параметрами вибрирования: частотой колебаний и их амплитудой.

Последними исследованиями установлено, что эффективность вибрирования находится в прямой зависимости от так называемого показателя интенсивности, представляющего собой совместную функцию скорости и ускорения, пропорциональную мощности потока энергии, расходуемой на колебания. Для круговых колебаний этот показатель И (см23) можно выразить как произведение скорости на ускорение

N=0,001A2n3

Опытами установлено, что показатель интенсивности вибрирования для большинства смесей, используемых в производстве сборных железобетонных изделий, составляет 80-300 см23. Показатели интенсивности вибрирования, рекомендуемые «Инструкцией по продолжительности и интенсивности вибрации…» (НИИЖБ, 1968), при различных соотношениях амплитуды и частоты колебаний, обеспечивающие требуемое уплотнение бетонной смеси с заданной удобоукладываемостью в сравнительно короткий срок, приведены ниже.

Соотношение между амплитудой и частотой колебаний при различной интенсивности вибрации (кривые равной интенсивности)
вибрация бетонных изделий - зависимости между амплитудой и частотой

Значения частоты и амплитуды колебаний для каждой смеси должны быть согласованы друг с другом таким образом,  чтобы обеспечить при вибрировании незатухающие колебания частиц смеси. Зная оптимальную величину интенсивности вибрирования для каждой смеси, можно определить предельную величину амплитуды, соответствующую различным частотам, при которых достигается наилучшее уплотнение смеси. Одновременно с этим амплитуда колебаний должна быть согласована с размерами частиц смеси. С уменьшением крупности заполнителя амплитуда должна уменьшаться, а частота колебаний соответственно увеличиваться. исследованиями установлено, что при наибольшей крупности заполнителя 40 мм оптимальная частота равна 33 Гц (2000 кол./мин), при крупности зерен 20 мм — 50 Гц (3000 кол./мин), а при максимальных размерах кусков 10 мм — 100 Гц (6000 кол./мин). При уплотнении мелкозернистых бетонных смесей в процессе формования тонкостенных конструкций наиболее целесообразным является вибрирование с частотой 100-133 Гц, 6000-8000 кол./мин.

Увеличение частоты колебаний сверх рекомендуемой (при оптимальной величине амплитуды) хотя и не приводит к повышению степени уплотнения смеси, но позволяет уменьшить продолжительность процесса и увеличить радиус действия вибратора. Поскольку зерна заполнителя неодинаковы по размеру и массе, следует стремиться к различным частотам колебаний при вибрировании: более низкой — для уплотнения крупного наполнителя и более высокой — для мелкого. С этой целью ведется конструирование разночастотных вибромеханизмов. До их массового внедрения приходится принимать значения амплитуды и частоты, соответствующие средним по величине и массе частицам каждой бетонной смеси. В некоторых случаях двухчастотное вибрирование можно осуществлять и на обычном оборудовании. Например, при изготовлении панелей с вибропригрузом виброплощадка или вибровкладыши могут иметь одну частоту колебаний, а вибропригруз — другую.

Вследствие сопротивления, оказываемого вязкой бетонной смесью, интенсивность вибрационных импульсов по мере удаления от мест их непосредственного приложения постепенно уменьшается, поэтому расчетная амплитуда колебаний вибромеханизма принимается выше оптимальной для смеси с учетом коэффициента затухания. Коэффициент затухания зависит в основном от вязкости смеси и принятой скорости колебаний. Для каждой бетонной смеси при установленных параметрах вибрирования имеется критическая продолжительность вибрирования, ниже которой прочность бетона уменьшается, а с повышением ее — не возрастает.

Оптимальная продолжительность вибрирования при постоянном режиме в зависимости от свойств бетонной смеси принимают равной показателю удобоукладываемости смеси, определяемому с помощью технического вискозиметра и увеличенному на 30 с. Назначение длительности вибрирования при амплитуде колебаний, отличающейся от стандартной (0,35 мм) при частоте колебаний 47 Гц (2800 кол./мин), производят по графику, в котором учтено увеличение времени уплотнения на 30 с. Сокращение времени вибрирования может быть достигнуто за счет повышения (до известного предела) интенсивности вибрирования и создания небольшого давления на поверхности уплотняемой смеси с помощью пригруза. Характерными признаками окончания процесса уплотнения при вибрировании являются прекращение оседания смеси и появление на ее поверхности цементного молока.

Зависимость параметров вибрирования от жесткости смеси
Зависимость продолжительности вибрирования бетона при разной жесткости бетонной смеси и амплитуде вибрации

По способу передачи колебаний от вибратора к бетонной смеси вибрирование бывает: объемное (полное или частичное), выполняемое на виброплощадках с пригрузом или без него; внутреннее, осуществляемое вибровкладышами (вибросердечниками), виброгребенками и разделительными стенками кассетных установок; наружное (поверхностное), производимое площадочными переносными вибраторами, вибронасадками, вибропыжами, виброрейками (вибробрусом), виброштампами и виброформами; комбинированное (смешанное), сочетающее несколько способов вибрирования.

По принципу действия различают вибраторы электромеханические, пневматические и электромагнитные. Благодаря простоте конструкций, надежности в работе и возможности изменения параметров вибрирования наибольшее применение на заводах сборного железобетона получили электромеханические и пневматические вибраторы.

  1. Бетоноведение
  2. Технология изготовления сборных железобетонных конструкций и деталей
  3. Бетонные работы в зимних условиях
  4. Производство сборных конструкций и деталей из легких бетонов
  5. Производство сборных изделий из плотных силикатных бетонов и бетонов на бесклинкерном вяжущем
  6. Производство бетонных и железобетонных изделий на полигонах
  7. Общие правила техники безопасности и противопожарные мероприятия на строительной площадке

Добавить комментарий